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Lectures

These lectures are meant for a general audience of mathematicians, so back-
ground in algebraic topology and differential geometry is not a pre-requisite.

Lecture 1: Introduction to LS Category. In the early 1930’s Lusternik
and Schnirelmann described a new invariant of a manifold, called category,
which provides a lower bound on the number of critical points for any smooth
function on a compact manifold. In this sense, category is a cousin of Morse
theory and in situations where it is not allowed to invoke genericity to obtain
a Morse function, it is Lusternik-Schnirelmann theory that must be relied
on. Once reformulated by Ralph Fox, category (or LS-category as it became
known) found its place as a useful homotopy invariant — but one whose explicit
computation is a very difficult task. In this lecture, we will describe basic
properties and re-formulations of category as well as classical applications of
category to, for instance, critical point theory and the Borsuk-Ulam theorem.
References are [CLOT, Fo, EG, CP, OS, OS2].

Lecture 2: LS Category in Symplectic Geometry. In applying LS cate-
gory to geometry, it is often the case that hard analytic results open the door
to a calculation involving category which solves a problem. This lecture will
focus on one such instance — the (strong) Arnold Conjecture on fixed points
of Hamiltonian diffeomorphisms on symplectically aspherical manifolds. In
this case, hard analysis produces a particular type of map arising from dy-
namics whose properties are especially well-suited to an LS category-theoretic
interpretation. This then leads to a proof of the conjecture. References are
[MS, Rud, RO, TO].

Lecture 3: LS Category and Non-Negative Ricci Curvature. An-
other very hard theorem with an interesting category interpretation is the
Cheeger-Gromoll Splitting Theorem for manifolds with non-negative Ricci cur-
vature. In this lecture, we will see how the Cheeger-Gromoll theorem leads to
a powerful LS category-type refinement of Bochner’s classical result that the
first Betti number of a non-negative Ricci-curved manifold is bounded above
by the manifold’s dimension. We shall also consider some similar applica-
tions to manifolds of almost non-negative sectional curvature. References are
[CG, YB, KPT, Op, OS3].
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Lecture 4: New LS Categorical Ideas in Applied Mathematics. The
motion planning problem asks for an algorithm that provides a path (in config-
uration space) for a system to take from one configuration to another. Perhaps
surprisingly, the existence of such a path for any initial and terminal values is
a question in topology involving a variant of category called sectional category.
This category-type notion was used by Michael Farber to define the topological
complexity (TC) of a space (e.g. a configuration manifold of a system) and to
apply TC to the motion planning problem. In this lecture, we will describe
TC, give some straightforward examples and mention some recent work on the
TC of aspherical spaces. References are [Fa1, Fa2, GLO1, GLO2].
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